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Abstract     —  For the first time, we present Neural Inverse
Space Mapping (NISM) optimization for EM-based design of
microwave structures.  The inverse of the mapping from the
fine to the coarse model parameter spaces is exploited for the
first time in a Space Mapping algorithm.  NISM optimization
does not require: up-front EM simulations, multipoint
parameter extraction or frequency mapping. The inverse of
the mapping is approximated by a neural network whose
generalization performance is controlled through a network
growing strategy.  We contrast our new algorithm with
Neural Space Mapping (NSM) optimization.

I. INTRODUCTION

An elegant new algorithm for EM-based design of
microwave circuits is presented for the first time: Neural
Inverse Space Mapping (NISM) optimization.  This is the
first Space Mapping (SM) algorithm that explicitly makes
use of the inverse of the mapping from the fine to the
coarse model parameter spaces.

NISM follows an aggressive formulation by not
requiring a number of up-front fine model evaluations to
start building the mapping.  An innovative yet simple
procedure for parameter extraction avoids the need of
multipoint matching and frequency mappings.  A neural
network whose generalization performance is controlled
through a network growing strategy approximates the
inverse of the mapping at each iteration.  NISM step
simply evaluates the current neural network at the optimal
coarse solution.  This step is equivalent to a quasi-Newton
step while the inverse mapping remains essentially linear.

We compare our new algorithm with Neural Space
Mapping (NSM) optimization [1-2] by solving the same
microwave design problem: an HTS microstrip filter.
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II. NEURAL INVERSE SPACE MAPPING (NISM)

A. Notation

Let the vectors xc and xf represent the design parameters
of the coarse and fine models, respectively (xc, xf ∈ ℜn).
We denote the optimizable fine model responses at point
xf and frequency ω by Rf (xf, ω) ∈ ℜr where r is the num-
ber of responses to be optimized.  The vector Rf (xf) ∈ ℜm

denotes the fine model responses at the Fp simulation
frequencies, where m = rFp.  Similarly, Rc (xc) ∈ ℜm deno-
tes the corresponding coarse model responses to be
optimized.

Additionally, we denote the characterizing fine model
responses at point xf ∈ ℜn and frequency ω by Rfs(xf, ω) ∈
ℜR, which includes the real and imaginary parts of all the
available characterizing responses in the model
(considering symmetry).  For example, for a 2-port
reciprocal network they include Re{S11}, Im{S11}, Re{S21}
and Im{S21}, and R = 4.  The vector Rfs(xf) ∈ ℜM denotes
the characterizing responses at all the Fp frequency points,
where M = RFp.  Similarly, Rcs(xc) ∈ ℜM denotes the
corresponding characterizing coarse model responses.

B. Flow Diagram: An Overview

Fig. 1 shows a flow diagram for NISM optimization.
We start by performing regular minimax optimization on
the coarse model to find the optimal coarse solution xc

*

that yields the desired response.  The characterizing fine
model responses Rfs at the optimal coarse solution xc

* are
then calculated.

We realize parameter extraction, which consists of
finding the coarse model parameters that makes the
characterizing coarse responses Rcs as close as possible to
the previously calculated Rfs.

We continue by training the simplest neural network N
that implements the inverse of the mapping from the fine
to the coarse parameter space at the available points.

The new point in the fine model parameter space is then
calculated by simply evaluating the neural network at the
optimal coarse solution.  If the maximum relative change
in the fine model parameters is smaller than a previously
defined amount we finish, otherwise we calculate the
characterizing fine model responses at the new point and
continue with the algorithm.
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C. Parameter Extraction

The parameter extraction procedure at the ith NISM
iteration is formulated as the following optimization
problem
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We solve (1) using the Levenberg-Marquardt algorithm
for nonlinear curve fitting available in the Matlab
Optimization Toolbox [3].

We normally use xc
* as the starting point for solving (1).

This might not be a good starting point when an extremely
severe matching problem is being solved, one that has
some poor local minimum around xc

*.  If the algorithm is
trapped in a poor local minimum, we change the starting
point for (1) by taking a small random perturbation ∆x
around xc

* until we find an acceptable local minimum, i.e.,
until we obtain a good matching between models.

Fig. 1. Flow diagram of Neural Inverse Space Mapping
(NISM) optimization.

The maximum perturbation ∆max is obtained from the
maximum absolute sensitivity of the parameter extraction
objective function at xc

* as follows

∞
∇
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Let rand ∈ ℜn be a vector whose elements take random
values between 0 and +1 every time it is evaluated.  The
values of the elements of ∆x are calculated as

)12(max −= kk randx ∆∆ ,   k = 1,… , n (3)

A value of δPE = 0.03 is used in our implementation.
Many other values of δPE could be used in (3), since we
use it only to escape from a poor local minimum.

A similar strategy for statistical parameter extraction
was proposed in [4], where an exploration region is first
created by predefining a fixed number of starting points
around xc

*.
The algorithm for realizing parameter extraction is

stated as follows

algorithm: Parameter Extraction
begin
         solve (1) using xc

* as starting point
         while ||e(xc

(i))||∞ > εPE
                  calculate ∆x using (2) and (3)
                  solve (1) using xc

*+∆x as starting point
end

A value of εPE = 0.15 is used in our implementation,
assuming that all the response values are normalized.

D. Inverse Neuromapping

When training the neural network N that implements the
inverse mapping we solve the following optimization
problem
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where i is the current NISM iteration and vector w
contains the internal parameters (weights, bias, etc.) of the
neural network N.  The starting point w(0) for solving (4) is
a unit mapping, i.e., N (xc

(l), w(0)) = xc
(l), for l = 1,…, i.  We

use the Scaled Conjugate Gradient (SCG) algorithm
available in the Matlab Neural Network Toolbox [5] for
solving (4).

To control the generalization performance of the neural

Calculate the fine responses
Rfs(xf 

(i))

PARAMETER EXTRACTION:
Find xc

(i) such that

Rcs(xc
(i)) ≈ Rfs(xf 

(i))

COARSE OPTIMIZATION: find the
optimal coarse model solution xc

* that
generates the desired response

xf 
(i+1) = N(xc

*)

Choose the coarse optimal solution as a
starting point for the fine model

xf
(i) =  xc

*

Start

INVERSE
NEUROMAPPING:

Find the simplest neural
network N  such that

xf 
(l) ≈ N (xc

(l))

l = 1,..., i

i = i + 1

xf
(i) ≈ xf

(i+1)

no

yes

End

i = 1
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network N, we follow a network growing strategy [6], in
which case we start with a small perceptron to match the
initial points and then add more neurons only when we are
unable to meet a small error.

We initially assume a 2-layer perceptron given by
o

c
o

fc bxWxwxN +==),( (5)

where W 
o ∈ ℜn×n is the matrix of output weighting factors,

bo∈ ℜn is the vector of output bias elements, and vector w
contains bo and the columns of W 

o.  The starting point is
obtained by making W 

o = I and bo = 0.
If a 2-layer perceptron is not sufficient to make the

learning error UN(w*) small enough, then we use a 3-layer
perceptron with h hidden neurons given by

o
c

o
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where W 
o ∈ ℜn×h, bo∈ ℜn, ΦΦΦΦ(xc) ∈ ℜh is the vector of

hidden signals, s ∈ ℜh is the vector of activation
potentials, W 

h ∈ ℜh×n is the matrix of hidden weighting
factors, bh∈ ℜh is the vector of hidden bias elements and h
is the number of hidden neurons.  In this work we use
hyperbolic tangents as nonlinear activation functions, i.e.,
ϕ(⋅) = tanh(⋅).  Vector w contains bo, bh, the columns of W 

o

and the columns of W 
h.

Our starting point for solving (4) using (6) is also a unit
mapping, which is obtained by making bo = 0, bh = 0, W 

h =
0.1[I 0]T and W 

o = 10[I 0], assuming that the training data
has been scaled between −1 and +1.  Notice that we
consider h ≥ n.

The algorithm for finding the simplest inverse
neuromapping is stated as follows

algorithm: Inverse Neuromapping
begin

solve (4) using (5)
h = n
while UN(w*) > εL

solve (4) using (6)
h = h+1

end

In our implementation we use εL = 1×10−4.  Notice that
the algorithm for finding the inverse neuromapping uses a
2-layer perceptron during at least the first n+1 NISM
iterations, since the points (xc

(i), xf
(i)) can be mapped with a

linear mapping for i = 1 … n+1.  A 3-layer perceptron is
needed only when we exceed n+1 NISM iterations and the
mapping is significantly nonlinear.

E. Nature of the NISM step

We can prove that the NISM step, xf 
(i+1) = N(xc

*), is
equivalent to a quasi-Newton step while the inverse
mapping built during NISM optimization remains linear,
i.e., while a 2-layer perceptron is enough to approximate
the inverse mapping.  We can also prove that the NISM
step gradually departs from a quasi-Newton step as the
amount of nonlinearity needed in the inverse mapping
increases.  Both proofs are omitted in this paper due to the
limitations in space.

III.  EXAMPLE

We apply NISM optimization to a high-temperature su-
perconducting (HTS) quarter-wave parallel coupled-line
microstrip filter, and contrast our results with those obtain-
ed by using NSM optimization on the same problem [1-2].

L1, L2 and L3 are the lengths of the parallel coupled-line
sections and S1, S2 and S3 are the gaps between the sec-
tions.  The width W is the same for all the sections as well
as for the input and output lines, of length L0.  A substrate
with thickness H and dielectric constant εr is used.

The design parameters are xf = [L1 L2 L3 S1 S2 S3] T.  The
specifications as well as the values of L0, H, W, εr, loss
tangent and metalization are taken as in [1-2].

Sonnet’s em [7] is employed as the fine model, using
a high-resolution grid.  As the coarse model we use
sections of OSA90/hope [8] built-in microstrip lines,
two-coupled microstrip lines and open circuits connected
by circuit theory over the same substrate.

We use the same optimal coarse model solution xc
* as in

[1-2].  The coarse and fine model responses at the optimal
coarse solution are shown in Fig. 2.

After only 3 fine model simulations the optimal NISM
solution was found, as shown in Fig. 3.

Fig. 2. Coarse model response (−) and fine model response
(o) at xc

*.
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Fig. 3. Coarse model response at xc
* (−) and fine model

response at xf
NISM (o): (a) at all the frequencies of interest, (b) at

the passband.

Fig. 4 shows the results obtained using NSM
optimization [2], where the optimal NSM solution was
found after 14 fine model evaluations.

Fig. 4. Coarse model response at xc
* (−) and fine mode

response at xf
NSM (o) at the passband.

It is seen that NISM optimization is not only more
efficient in terms of the required fine model evaluations,
but also yields a solution closer to the optimal solution of
the original optimization problem (compare Figs. 3b and
4).  We have arrived at similar conclusions in other
microwave design problems where NISM and NSM were
applied (2-section impedance transformer, band-stop
microstrip filter with quarter-wave open stubs, etc.).

IV. CONCLUSIONS

We propose Neural Inverse Space Mapping (NISM)
optimization for EM-based design of microwave
structures.  The inverse of the mapping is exploited for the
first time in a space mapping algorithm.  NISM
optimization does not require: up-front EM simulations,
multipoint parameter extraction nor frequency mapping.
Our new algorithm exhibits superior performance than
Neural Space Mapping (NSM) optimization.
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